1.2 Scientific Notation and Significant Digits

STANDARDS

1.3 I can determine the precision of a measurement by identifying and utilizing significant digits.

Please do these problems in your notes to review.

1. Give the SI base unit of measurement for each of the following quantities.
 a. mass b. length c. time d. temperature
 kg m s K

2. Convert the following numbers into scientific notation.
 a. 85,000,000 b. 0.00019
 \[8.5 \times 10^7\] \[1.9 \times 10^{-4}\]

3. Put the following into decimal notation.
 a. \[8.72 \times 10^{-8}\] b. \[3 \times 10^4\]
 \[0.0000000872\] 30,000

MEASUREMENT

A measurement is a comparison between an unknown quantity and a standard.

Precision vs. Accuracy

Precision refers to the closeness of two or more measurements to each other. Accuracy refers to the closeness of a measured value to a standard or known value.

The precision of a measurement is \(1/2\) the smallest division of the instrument.
Parallax

Parallax is the apparent shift in the position of an object when it is viewed from different angles.

WHY SIGNIFICANT DIGITS?

"A measurement without any knowledge of its uncertainty is meaningless!"

- Walter Lewin, MIT
How many significant digits are there in each number?

1) 0.0860 m
2) 172,000 g
3) 1.7200 \times 10^5 g

All non-zero numbers are significant?

Are all zeros significant?
- Leading? NEVER
- Tweeners? ALWAYS
- Trailing? SOMETIMES
 - **AFTER DEC.** → YES
 - **BEFORE DEC.** → NO

How many significant digits?

a.) 0.0860 m
b.) 172,000 g
c.) 1.7200 \times 10^5 g

Adding / Subtracting

The number of decimal places after addition or subtraction is equal to the smallest number of decimal places in any of the individual terms.

Solve the following problem using significant digits.

\[3.86 \text{ m} + 2.4 \text{ m} = 6.26 \text{ m} \]

3.86 m + 2.4 m = \boxed{6.3 m}
SIGNIFICANT DIGITS

Multiplying / Dividing

The number of significant figures after multiplication or division is equal to the number of significant figures in the least accurately known quantity.

SIGNIFICANT DIGITS

Solve the following problem using significant digits.

\[
\frac{409.2 \text{ km}}{11.4 \text{ s}} = 35.9473684
\]

35.9 km/s

35.89 km/s

HOMEWORK

Unit 1 Problems (6-7)