10.1 Potential Energy and the Work Done by Conservative Forces

Potential Energy and Conservation of Energy

Conservative vs. Nonconservative Forces

<table>
<thead>
<tr>
<th>CONSERVATIVE FORCES</th>
<th>NONCONSERVATIVE FORCES</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Work is stored in the form of energy that can be released at later time.</td>
<td>• Work cannot be recovered later as kinetic energy. Instead, it is converted to other forms of energy.</td>
</tr>
</tbody>
</table>

Potential Energy and the Work Done by Conservative Forces

<table>
<thead>
<tr>
<th>Learning Target</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.1</td>
<td>I can define, analyze, and solve problems involving potential energy and the work done by conservative forces.</td>
</tr>
</tbody>
</table>
10.1 Potential Energy and the Work Done by Conservative Forces

Conservative vs. Nonconservative Forces

<table>
<thead>
<tr>
<th>CONSERVATIVE FORCES</th>
<th>NONCONSERVATIVE FORCES</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Work is stored in the form of energy that can be released at later time.</td>
<td>• Work cannot be recovered later as kinetic energy. Instead, it is converted to other forms of energy.</td>
</tr>
</tbody>
</table>

EXAMPLES
Gravity & Springs
EXAMPLES
Friction, Tension, Muscles

Work Done on a Closed Path

\[W = 0 \]

Conservative Force Definitions

• A conservative force is a force that does zero total work on any closed path.

Different Paths, Different Forces

\[W = -mgd \]

Conservative Force Definitions

• A conservative force is a force that does zero total work on any closed path.

• If the work done by a force in going from an arbitrary point A to an arbitrary point B is independent of the path from point A to B, the force is conservative.

Energy

The ability to do work.
10.1 Potential Energy and the Work Done by Conservative Forces

January 28, 2019

Energy and Ice Cream

Kinetic Energy

\[KE = \frac{1}{2} m v^2 \]

Would you stand here?

Potential Energy

Potential Energy (U)
is a storage system for energy.

Final Ascent

Work Done by a Conservative Force

When a conservative force does an amount of work \(W_c \), the corresponding potential energy \(U \) is changed.

\[W_c = -\Delta U \]
1. An 82.0 kg mountain climber is in the final stage of the ascent of 4301-m-high Pikes Peak. What is the change in gravitational potential energy as the climber gains the last 100.0 m of altitude?

2. A candy bar called the Mountain Bar has a calorie content of 212 Cal = 212 kcal, which is equivalent to an energy of 8.87×10^5 J. If an 81.0-kg mountain climber eats a Mountain Bar and magically converts it all to potential energy, what gain of altitude would be possible?