
Conservation of Mechanical Energy

Learning Target	Description
10.2	I can define, interpret, and solve problems involving the Law of Conservation of Energy.

UNIT 9: WORK, ENERGY, AND POWER

$$W = (F \cos \theta) d$$

$$U = mgh$$

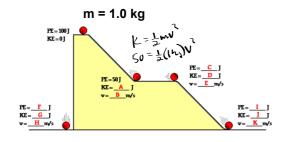
$$K = \frac{1}{2}mv^{2}$$

$$\bar{P} = \frac{\Delta W}{\Delta t}$$

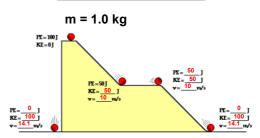
$$U = \bar{Y}v$$

$$P = Fv$$

Mechanical Energy

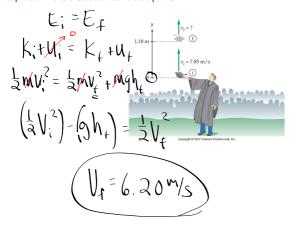

Mechanical Energy is the sum of the potential and kinetic energies of an object.

$$E = K + U$$


Conservation of Mechanical Energy

In systems with conservative forces only, the mechanical energy E is conserved.

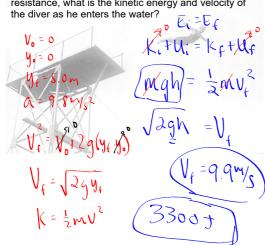
Fill In the Blanks



Fill In the Blanks

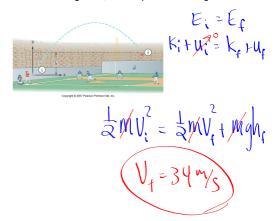
Graduation Fling

At the end of a graduation ceremony, graduates fling their caps into the air. Suppose a 0.120-kg is thrown straight upward with an initial speed of 7.85 m/s, and that air resistance can be ignored. Find the speed of the cap when it is 1.18 m above the release point.

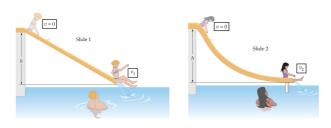


Conservation of Energy

- 5. A 68.2 kg diver steps off a 5.0 m platform. Ignoring air resistance, what is the kinetic energy and velocity of the diver as he enters the water?
- 6. In the bottom of the ninth inning, a player hits a 0.15-kg baseball over the outfield fence. The ball leaves the bat with a speed of 36 m/s, and a fan in the bleachers catches it 7.2 m above the point where it was hit. Assuming frictional forces can be ignored, find its speed when caught.


Conservation of Energy

A 68.2 kg diver steps off a 5.0 m platform. Ignoring air resistance, what is the kinetic energy and velocity of the diver as he enters the water?



Conservation of Energy

In the bottom of the ninth inning, a player hits a 0.15-kg baseball over the outfield fence. The ball leaves the bat with a speed of 36 m/s, and a fan in the bleachers catches it 7.2 m above the point where it was hit. Assuming frictional forces can be ignored, find its speed when caught.

Which Slide is Better?

AP PHYSICS 2