10.2 Conservation of Mechanical Energy

Conservation of Mechanical Energy

<table>
<thead>
<tr>
<th>Learning Target</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.2</td>
<td>I can define, interpret, and solve problems involving the Law of Conservation of Energy.</td>
</tr>
</tbody>
</table>

Mechanical Energy

Mechanical Energy is the sum of the potential and kinetic energies of an object.

\[E = K + U \]

Conservation of Mechanical Energy

In systems with conservative forces only, the mechanical energy \(E \) is conserved.

\[E_i = E_f \]

\[K_i + U_i = K_f + U_f \]

Fill In the Blanks

\[m = 1.0 \text{ kg} \]

Fill In the Blanks

\[m = 1.0 \text{ kg} \]
10.2 Conservation of Mechanical Energy

Graduation Fling

At the end of a graduation ceremony, graduates fling their caps into the air. Suppose a 0.120-kg cap is thrown straight upward with an initial speed of 7.85 m/s, and that air resistance can be ignored. Find the speed of the cap when it is 1.18 m above the release point.

\[
E_i = E_f
\]

\[
K_i + U_i = K_f + U_f
\]

\[
\frac{1}{2}mv_i^2 = \frac{1}{2}mv_f^2 + mgh
\]

\[
\left(\frac{1}{2}V_i^2\right) - \left(\frac{1}{2}V_f^2\right) = \frac{1}{2}V_f^2
\]

\[
V_f = 6.20 \text{ m/s}
\]

Conservation of Energy

A 68.2 kg diver steps off a 5.0 m platform. Ignoring air resistance, what is the kinetic energy and velocity of the diver as he enters the water?

\[
E_i = E_f
\]

\[
K_i + U_i = K_f + U_f
\]

\[
mgh = \frac{1}{2}mv^2
\]

\[
\sqrt{2gh} = V_f
\]

\[
V_f = 9.99 \text{ m/s}
\]

Conservation of Energy

In the bottom of the ninth inning, a player hits a 0.15-kg baseball over the outfield fence. The ball leaves the bat with a speed of 36 m/s, and a fan in the bleachers catches it 7.2 m above the point where it was hit. Assuming frictional forces can be ignored, find its speed when caught.

\[
E_i = E_f
\]

\[
K_i + U_i = K_f + U_f
\]

\[
\frac{1}{2}mv_i^2 = \frac{1}{2}mv_f^2 + mgh
\]

\[
V_f = 34 \text{ m/s}
\]

PROBLEMS

Which Slide is Better?

LETS'S PRACTICE

PROBLEMS (6-10)