Kinetic Energy and The Work-Energy Theorem

<table>
<thead>
<tr>
<th>Learning Target</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.1</td>
<td>I can define, analyze, and calculate the amount of work done by a force in a closed system.</td>
</tr>
<tr>
<td>10.2</td>
<td>I can define, analyze, and solve problems involving kinetic energy.</td>
</tr>
</tbody>
</table>

Work

- **W = F d cos θ**
- Vector or Scalar: Vector
- Units: 1 N m = 1 J (Joule)
- Relationship: Directly Proportional

Interpret the Graph

\[W = F \cdot d = 30 \text{ J} \]

Compare and Contrast

Positive Work
- Speeds up
- Work = \(W = \text{mg}d \)

Negative Work
- Speeds down
- Work = \(W = -\text{mg}d \)

\(0 < \theta < 90 \)
\(90 < \theta < 180 \)

What About This One?

\[W = \text{area} = \frac{1}{2}bh \]

\[= \frac{1}{2} \times (1.5 \text{ m}) \times (20 \text{ N}) \]

\[W = 15 \text{ J} \]
10.2 WORK AND ENERGY

February 14, 2019

Work Done By A Variable Force
Work can be obtained graphically by finding the area under a force-displacement graph.

Work Done By a Spring

I'd love to continue talking about work, but I just don't have the energy.

Energy
The ability to do work and cause change.

Forms of Energy

Kinetic Energy

Kinetic Energy is the energy of motion.

\[KE = \frac{1}{2}mv^2 \]

Vector or Scalar

Units Relationship

\[\text{Joules} \quad \text{m} \rightarrow \text{Direct prop.} \quad \text{v} \rightarrow \text{Direct Quad.} \]
KE = \frac{1}{2} mv^2

3) What is the range of possible values for kinetic energy?

IN CLASS EXAMPLES
3. A snowboarder is sliding across a flat section of snow and eventually comes to a rest. In this situation, does the kinetic friction force do positive, negative, or zero work. Explain.

4. The graph in Figure 10-22 shows the force and displacement of an object being pulled. Calculate the work done to pull the object 7.0 m.

5. How much work is done to stretch a spring of force constant 1.0 \times 10^4 \text{ N/m}, a distance of 0.15 m.

6. A 0.14 kg pinecone falls 16 m to the ground, where it lands with a speed of 13 m/s. How much kinetic energy does the pinecone have when it hits the ground?
10.2 WORK AND ENERGY

February 14, 2019

KEEP CALM AND LET'S PRACTICE

PRACTICE PROBLEMS (9-15)