11.1 Potential Energy and the Work Done by Conservative Forces

Announcements

<table>
<thead>
<tr>
<th>PRACTICE</th>
<th>LABS</th>
<th>TESTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unit 10 Practice Problems</td>
<td>Stair Power Lab</td>
<td>Unit 11 Test Thursday 3/8/19</td>
</tr>
</tbody>
</table>

Potential Energy and the Work Done by Conservative Forces

<table>
<thead>
<tr>
<th>Learning Target</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.1</td>
<td>I can define, analyze, and solve problems involving potential energy and the work done by conservative forces.</td>
</tr>
</tbody>
</table>

Conservative vs. Nonconservative Forces

<table>
<thead>
<tr>
<th>CONSERVATIVE FORCES</th>
<th>NONCONSERVATIVE FORCES</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Work is stored in the form of energy that can be released at later time.</td>
<td>• Work cannot be recovered later as kinetic energy. Instead, it is converted to other forms of energy.</td>
</tr>
</tbody>
</table>

Examples

- Gravity & Springs
- Friction, Tension, Muscles

Energy

The ability to do work.

Energy and Ice Cream
11.1 Potential Energy and the Work Done by Conservative Forces

Kinetic Energy

\[KE = \frac{1}{2} m v^2 \]

Potential Energy

Potential Energy \(U \) is a storage system for energy.

\[\Delta U_g = mgh \]

Gravitational Potential Energy

Gravitational Potential Energy depends on weight and height, \(h \), but it is independent of horizontal position.
11.1 Potential Energy and the Work Done by Conservative Forces

Springs and Bungees

Because springs, and bungee cords, exert conservative forces, they can serve as energy storage devices.

Work Done By a Spring

Hooke’s Law

\[F = kx \]

Work Done by a Spring

\[W = \frac{1}{2} kx^2 \]

Potential Energy for a Spring

\[U_s = \frac{1}{2} kx^2 \]

POTENTIAL IN-CLASS PROBLEMS

1. An 82.0 kg mountain climber is in the final stage of the ascent of 4301-m-high Pikes Peak. What is the change in gravitational potential energy as the climber gains the last 100.0 m of altitude?

\[\Delta U_g = mgh = (82 \text{ kg})(9.8 \text{ m/s}^2)(100 \text{ m}) \]
\[\Delta U_g = 80,400 \text{ J} \]

Pike’s Peak or Bust

An 82.0 kg mountain climber is in the final stage of the ascent of 4301-m-high Pikes Peak. What is the change in gravitational potential energy as the climber gains the last 100.0 m of altitude?

\[\Delta U_g = mgh \]
\[\Delta U_g = (82 \text{ kg})(9.8 \text{ m/s}^2)(100 \text{ m}) \]
\[\Delta U_g = 80,400 \text{ J} \]
11.1 Potential Energy and the Work Done by Conservative Forces

PHYSICS 1

February 25, 2019

POTENTIAL IN-CLASS PROBLEMS

2. Find the potential energy of a spring with force constant \(k = 680 \text{ N/m} \) if it is (a) stretched by 5.00 cm or (b) compressed by 10.00 cm.

 a) \(\Delta U_s = \frac{1}{2} k x^2 \)
 \(\Delta U_s = \frac{1}{2} (680 \text{ N/m})(0.05 \text{ m})^2 \)
 \(\Delta U_s = 0.85 \text{ J} \)

 b) \(\Delta U_s = \frac{1}{2} k x^2 \)
 \(\Delta U_s = \frac{1}{2} (680 \text{ N/m})(0.10 \text{ m})^2 \)
 \(\Delta U_s = 3.4 \text{ J} \)

3. When a force of 120.0 N is applied to a certain spring, it causes a stretch of 2.25 cm. What is the potential energy of this spring when it is compressed by 3.50 cm?

 \(F = k x \)
 \(F / x = k \)
 \(5330 \text{ N/m} = k \)
 \(\Delta U_s = \frac{1}{2} k x^2 \)
 \(\Delta U_s = \frac{1}{2} (5330 \text{ N/m})(0.035 \text{ m})^2 \)
 \(\Delta U_s = 3.26 \text{ J} \)

Application

PROBLEMS (1-5)