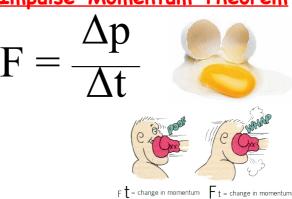
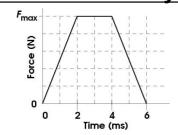
Conservation of Momentum

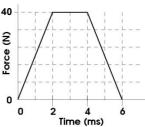
Learning Target	Description
11.2	I can define, interpret, and solve problems involving the Law of Conservation of Momentum.


11.1 IMPULSE AND MOMENTUM

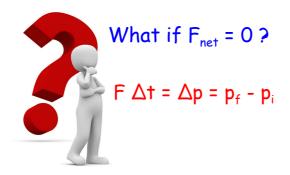
- 1. A compact car, with mass 725 kg, is moving at 115 km/h toward the east.
- a. Find the magnitude and direction of its momentum.
 b. A second car, with a mass of 2175 kg, has the same momentum. What is its velocity?
- A 0.150-kg baseball is dropped from rest. If the magnitude of the baseball's momentum is 0.780 kg·m/s just before it lands on the ground, from what height was it dropped?

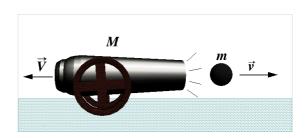

 3. Find the magnitude of the impulse delivered to a soccer ball when a player kicks
- it with a force of 1450 N. Assume that the player's foot is in contact with the ball for $\frac{5.80 \times 10^{-3} \text{ s}}{\text{s}}$.
- In a typical golf swing, the club is in contact with the ball for about 0.0010 s. If the 45-g ball acquires a speed of 67 m/s, estimate the magnitude of the force exerted by the club on the ball
- When spiking a volleyball, a player changes the velocity of the ball from 4.2 m/s to $\frac{.24 \text{ m/s}}{.24 \text{ m/s}}$ along a certain direction. If the impulse delivered to the ball by the player is $\frac{.9.3 \text{ kg m/s}}{.9.3 \text{ kg m/s}}$ what is the mass of the volleyball?

Review Momentum and Impulse Momentum Impulse-Momentum Theorem $F \Delta t = \Delta p = p_f - p_i$


Impulse-Momentum Theorem

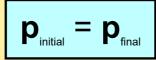
What's The Story?


Force vs. Time Graph


The **impulse** can also be found by finding the area under a force-time graph.

AP PHYSICS

Momentum



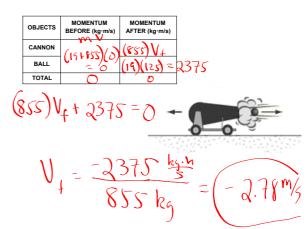
Newton's 3rd Law

Law of Conservation of Momentum

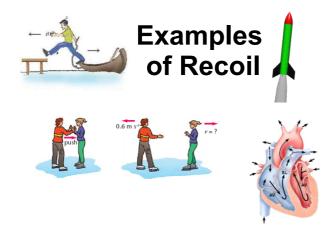
- If the net force acting on an object is zero, its momentum is <u>conserved</u>.
- In any closed system, the total momentum of the system remains constant.

Recoil

A cannon fires a 19.0 kg ball from its 4.00 m long barrel with a muzzle velocity of 125 m/s. If the cannon has a total mass of 855 kg, what is the resulting recoil speed of the cannon?


Momentum Tables

In analyzing momentum problems, a momentum table can be a powerful tool for problem solving. To create a momentum table, follow these basic steps:


- Identify all objects in the system. List them vertically down the left-hand column.
- Determine the momenta of the objects before the event. Use variables for any unknowns.
- 3. Determine the momenta of the objects after the event. Use variables for any unknowns.
- 4. Add up all the momenta from before the event, and set them equal to the momenta after the event.
- 5. Solve your resulting equation for any unknowns.

Recoil

A cannon fires a 19.0 kg ball from its 4.00 m long barrel with a muzzle velocity of 125 m/s. If the cannon has a total mass of 855 kg, what is the resulting record speed of the cannon?

AP PHYSICS 2

Ballistocardiograph

PRACTICE PROBLEMS

(9-13)

AP PHYSICS 3