

Announcements and Upcoming Events

PRACTICE	Unit 12 Problems (1-17)
LABS	Correct Paper Car Crash Lab
TESTS	Unit 12 Test Tuesday (3/26/19)

Rolling Motion and the Moment of Inertia

12.2

I can describe, interpret, and solve problems involving rolling motion and the moment of inertia.

UNIT 12 REVIEW

Key Concepts

- \bullet Angular position and its changes are measured in radians. One complete revolution is 2π rad.
- Angular velocity is given by the following equation.

$$\omega = \frac{\Delta \theta}{\Delta t}$$

Angular acceleration is given by the following equation.

$$\alpha = \frac{\Delta \epsilon}{1}$$

 For a rotating, rigid object, the angular displacement, velocity, and acceleration can be related to the linear displacement, velocity, and acceleration for any point on the object.

 $d = r\theta$ $v = r\omega$ $a = r\alpha$

UNIT 12 REVIEW

Key Concepts

Linear Equation $(a = constant)$	Angular Equation $(\alpha = \text{constant})$
$v = v_0 + at$ $x = x_0 + v_0t + \frac{1}{2}at^2$ $v^2 = v_0^2 + 2a(x - x_0)$	$\omega = \omega_0 + \alpha t$ $\theta = \theta_0 + \omega_0 t + \frac{1}{2} \alpha t^2$ $\omega^2 = \omega_0^2 + 2\alpha(\theta - \theta_0)$

UNIT 12 REVIEW

Key Concepts

In a wheel that rolls without slipping, the point in Contact with the ground is instantaneously at rest. The Center of the wheel moves forward with the speed V=rw, and the top of the wheel moves forward with twice that speed V=rw

UNIT 12 REVIEW

Key Concepts

• The moment of inertia of an object depends on the way the object's mass is distributed about the rotational axis. For a point object:

blate rorough center, e of plate)
(axis perpendicul to plane of plate)
(b) plane of plate)

AP PHYSICS 1

UNIT 12 IN CLASS PROBLEMS

You learned that an object's motion can be described using big picture concepts of kinetic energy and momentum.

> 12. In one minute, write down at least 3 things that you remember about kinetic energy and at least 3 things you remember about momentum.

Rotational Kinetic Energy

The rotational kinetic energy of an object is one-half the product of its moment of inertia and the square of its angular speed.

$$K = \frac{1}{2}I\omega^2$$

Rotational Kinetic Energy

Vector of Scalar?

Units?

$$K = \frac{1}{2}I\omega^2$$

Relationship?

Angular Momentum

Relationship?

Direct Prop.

UNIT 12 IN CLASS PROBLEMS

- 13. A typical small rescue helicopter has four blades, each is 4.00 m long and has a mass of 50.0 kg. The blades can be approximated as thin rods that rotate about one end of an axis perpendicular to their length. The helicopter has a total loaded mass of 1000 kg. Calculate the rotational kinetic energy in the blades when they rotate at 300 rpm.
- 14. Find the angular momentum of a 0.13 kg Frisbee (considered to be a uniform disk of radius 7.5 cm) spinning with an angular speed of 1.15 rad/s.

AP PHYSICS 2

UNIT 12 IN CLASS PROBLEMS

13. A typical small rescue helicopter has four blades, each is 4.00 m long and has a mass of 50.0 kg. The blades can be approximated as thin rods that rotate about one end of an axis perpendicular to their length. The helicopter has a total loaded mass of 1000 kg. Calculate the rotational kinetic energy in the blades when they rotate at 300 rpm

UNIT 12 IN CLASS PROBLEMS

13. A typical small rescue helicopter has four blades, each is 4.00 m long and has a mass of 50.0 kg. The blades can be approximated as thin rods that rotate about one end of an axis perpendicular to their length. The helicopter has a total loaded mass of 1000.0 kg. Calculate the rotational kinetic energy in the blades when they rotate at 300.0 rpm.

$$\omega = 31.4 \text{ rad/s}$$

$$I_{total} = 1070 \text{ kg.m}^2$$

$$K = \frac{1}{2} I \omega^2$$

 $K = \frac{1}{2} (1070 \text{ kg} \cdot \text{m}^2) (31.4 \text{ rad/s})^2$
 $K = 5.27 \times 10^5 \text{ J}$

UNIT 12 IN CLASS PROBLEMS

14. Find the angular momentum of a 0.13 kg Frisbee (considered to be a uniform disk of radius 7.5 cm) spinning with an angular speed of 1.15 rad/s.

UNIT 12 IN CLASS PROBLEMS

14. Find the angular momentum of a 0.13 kg Frisbee (considered to be a uniform disk of radius 7.5 cm) spinning with an angular speed of 1.15 rad/s.

AP PHYSICS 3