12.3(B) Torque

Announcements

<table>
<thead>
<tr>
<th>PRACTICE</th>
<th>LABS</th>
<th>TESTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unit 12 Problems (1-17)</td>
<td>Balancing Lab (Due Tues. 3/19)</td>
<td>Unit 12 Test Tuesday (3/26/19)</td>
</tr>
</tbody>
</table>

TORQUE

12.3 I can define, analyze, and solve problems involving torque.

UNIT 12 REVIEW

Rotational Kinetic Energy and Angular Momentum

The rotational kinetic energy of an object is one-half the product of its moment of inertia and the square of its angular speed.

\[K = \frac{1}{2} I \omega^2 \]

Angular momentum (L) is equal to the product of the object’s moment of inertia and the object’s angular velocity.

\[L = I \omega \]

Question

How do you get an object to rotate?

Torque

Torque (τ) is a measure of how effectively a force causes rotation.
The Torque Experience

Definition of Torque (tangential force)

\[\tau = F \cdot r \]

Torque = force \times radius

Torque

- Vector of Scalar?
- Units? \(N \cdot m \)
- Relationship? Direct Prop.

Sign of Torque

- \(\tau > 0 \) if the torque causes a counterclockwise angular acceleration
- \(\tau < 0 \) if the torque causes a clockwise angular acceleration

Physics Opens Doors!

Only the tangential component of force cause a torque.
12.3(B) Torque

AP PHYSICS
March 18, 2019

Definition of Torque (nontangential force)

\[\tau = (F \sin \theta) r \]

torque = (force \times \sin \theta) \times radius

UNIT 12 IN CLASS PROBLEMS

15. To open a revolving door a tangential force \(F \) if applied at a distance \(r \) from the axis of rotation. If the minimum torque required to open the door is 3.1 N.m, what force must be applied if \(r \) if (a) 0.94 m or (b) 0.35 m?

16. Captains Sparrow and Barbosa are in a disagreement about which way to turn the ship. They exert forces shown below on the ship's wheel. The wheel has a radius of 0.74 m, and the two forces have magnitudes \(F_1 = 72 \) N, and \(F_2 = 58 \) N. (a) Find the torque caused by \(F_1 \). (b) Find the torque caused by \(F_2 \). (c) In which direction does the wheel turn as a result of these two forces?

UNIT 12 IN CLASS PROBLEMS

To open a revolving door a tangential force \(F \) if applied at a distance \(r \) from the axis of rotation. If the minimum torque required to open the door is 3.1 N.m, what force must be applied if \(r \) if (a) 0.94 m or (b) 0.35 m?

(a) \(F_1 = \frac{\tau}{r_1} = 3.3 \) N

(b) \(F_2 = \frac{\tau}{r_2} = 8.9 \) N

\(\tau_1 = (72 \text{ N} \sin 50.0^\circ) r = 41 \text{ N.m} \)

\(\tau_2 = -(58 \text{ N} \sin 90.0^\circ) r = -43 \text{ N.m} \)

\(\tau_{\text{total}} = \tau_1 + \tau_2 = -2 \text{ N.m} \) Clockwise

UNIT 12 IN CLASS PROBLEMS

Captains Sparrow and Barbosa are in a disagreement about which way to turn the ship. They exert forces shown below on the ship's wheel. The wheel has a radius of 0.74 m, and the two forces have magnitudes \(F_1 = 72 \) N, and \(F_2 = 58 \) N. (a) Find the torque caused by \(F_1 \). (b) Find the torque caused by \(F_2 \). (c) In which direction does the wheel turn as a result of these two forces?

(\(\tau_1 = (72 \text{ N} \sin 50.0^\circ) r = 41 \text{ N.m} \)

(\(\tau_2 = -(58 \text{ N} \sin 90.0^\circ) r = -43 \text{ N.m} \)

(\(\tau_{\text{total}} = \tau_1 + \tau_2 = -2 \text{ N.m} \) Clockwise
Archimedes is said to have remarked about the lever: "Give me a place to stand on, and I will move the Earth."

UNIT 12 PROBLEMS

(18-23)