UNIT 13 REVIEW: LEARNING TARGET 13.1

\[T = \frac{2\pi}{\omega} = \frac{1}{f} \]

- \(f \) = frequency
- \(T \) = period
- \(\omega \) = angular speed

UNIT 13 REVIEW: LEARNING TARGET 13.2

\[x = A \cos(2\pi ft) \]

\[T_s = 2\pi \sqrt{\frac{m}{k}} \]

\[T_p = 2\pi \sqrt{\frac{\ell}{g}} \]

- \(A \) = amplitude
- \(f \) = frequency
- \(k \) = spring constant
- \(\ell \) = length
- \(m \) = mass
- \(T \) = period
- \(t \) = time
- \(x \) = position

UNIT 13 REVIEW: LEARNING TARGET 13.3

\[\lambda = \frac{v}{f} \]

\[\lambda = \nu \tau \]

- \(\lambda \) = wavelength
- \(v \) = speed
- \(f \) = frequency

Key Concepts

- Sound is a pressure variation transmitted through matter as a longitudinal wave.
- A sound wave has frequency, wavelength, speed, and amplitude.
- The frequency of a sound wave is heard as its pitch.
- The pressure amplitude of a sound wave can be measured in decibels (dB).
- The loudness of sound as perceived by the ear and brain depends mainly on its amplitude.
13.4 Sound (ALL)

Refraction

Sound waves bend when parts of the wave fronts travel at different speeds. This bending of sound is called **refraction**.

Speed of Sound

<table>
<thead>
<tr>
<th>Medium</th>
<th>m/s</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air (0°C)</td>
<td>331</td>
</tr>
<tr>
<td>Air (20°C)</td>
<td>343</td>
</tr>
<tr>
<td>Helium (0°C)</td>
<td>972</td>
</tr>
<tr>
<td>Water (25°C)</td>
<td>1493</td>
</tr>
<tr>
<td>Seawater (25°C)</td>
<td>1533</td>
</tr>
<tr>
<td>Copper (25°C)</td>
<td>3560</td>
</tr>
<tr>
<td>Iron (25°C)</td>
<td>5130</td>
</tr>
</tbody>
</table>

The Doppler Effect

The **Doppler Effect** describes the change in frequency of a wave for an observer moving relative to the source of the wave.
The Doppler Effect

\[f_d = f_s \left(\frac{v - v_d}{v - v_s} \right) \]

\(V = 343 \text{ m/s} \)

d - detector
s - source

UNIT 13: IN-CLASS PROBLEMS

6. During a thunder storm, you see a flash of lightning. Five seconds later you hear the corresponding thunder. How far away was the lightning strike?

7. You drop a stone from rest into a well that is 7.35 m deep. How long does it take before you hear the splash?

8. A trumpet player sounds C above middle C (524 Hz) while traveling in a convertible at 24.6 m/s. If the car is coming toward you, what frequency would you hear?
UNIT 13: IN-CLASS PROBLEMS

6. During a thunder storm, you see a flash of lightning.
 Five seconds later you hear the corresponding thunder.
 How far away was the lightning strike?

 \[x = v t \]
 \[x = (343 \text{ m/s})(5 \text{ s}) \]
 \[x = 1715 \text{ m} \]

UNIT 13: IN-CLASS PROBLEMS

7. You drop a stone from rest into a well that is 7.35 m deep. How long does it take before you hear the splash?

 \[y = \frac{1}{2} g t^2 \]
 \[t_1 = \frac{2y}{g} = 1.22 \text{ s} \]
 \[d = v t_2 \]
 \[t_2 = \frac{d}{v} = \frac{7.35 \text{ m}}{343 \text{ m/s}} = 0.0214 \text{ s} \]
 \[t = t_1 + t_2 = 1.24 \text{ s} \]

UNIT 13: IN-CLASS PROBLEMS

8. A trumpet player sounds C above middle C (524 Hz) while traveling in a convertible at 24.6 m/s. If the car is coming toward you, what frequency would you hear?

 \[f_0 = f_0 \left(\frac{v - v_d}{v - v_s} \right) \]
 \[f_0 = 524 \text{ Hz} \left(\frac{343 \text{ m/s} - 0}{343 \text{ m/s} - 24.6 \text{ m/s}} \right) = 564 \text{ Hz} \]