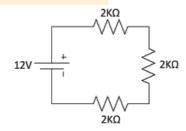
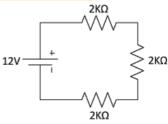

Resistors in Series

A simple circuit consists of a 12 V battery and three 2000 Ω resistors connected in series.

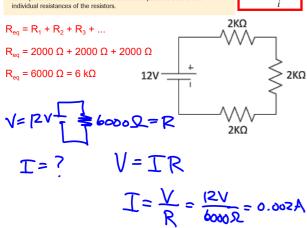

Resistors in Series

A simple circuit consists of a 12 V battery and three 2000 Ω resistors connected in series.

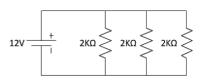
Resistors in Series


Equivalent Resistance for Resistors in Series $R = R_A + R_B + \dots$ The equivalent resistance of resistors in series equals the sum of the individual resistances of the resistors.

Resistors in Series


Equivalent Resistance for Resistors in Series $R=R_{\rm A}+R_{\rm B}+\ldots$ The equivalent resistance of resistors in series equals the sum of the individual resistances of the resistors.

Resistors in Series


Resistors in Parallel

Equivalent Resistance for Resistors in Parallel

$$\frac{1}{R} = \frac{1}{R_{\rm A}} + \frac{1}{R_{\rm B}} + \frac{1}{R_{\rm C}} \cdot \cdot \cdot$$

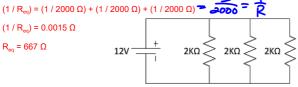
The reciprocal of the equivalent resistance is equal to the sum of the reciprocals of the individual resistances.

$$\frac{1}{R_p} = \sum_{i} \frac{1}{R_i}$$

Resistors in Parallel

Equivalent Resistance for Resistors in Parallel

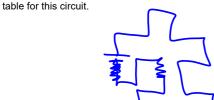
$$\frac{1}{R} = \frac{1}{R_{\rm A}} + \frac{1}{R_{\rm B}} + \frac{1}{R_{\rm C}} \cdot \cdot \cdot$$


The reciprocal of the equivalent resistance is equal to the sum of the reciprocals of the individual resistances.

$$\frac{1}{R_p} = \sum_i \frac{1}{R_i}$$

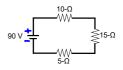
$$(1/R_{eq}) = 0.0015 \Omega$$

 $R_{eq} = 667 \Omega$


VIRP Tables

A simple and straightforward method for analyzing circuits involves creating a VIRP table for each circuit you encounter. A VIRP table describes the potential drop (V-voltage), current flow (I-current), resistance (R) and power dissipated (P-power) for each element in your circuit, as well as for the circuit as a whole.

VIRP Table				
	V	I	R	Р
R1				
R2				
R3				
Total				

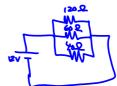

Circuit Analysis Example

A 10- Ω , 15- Ω , and 5- Ω resistor are connected in a series circuit with a 90-V battery. Draw a schematic of the circuit and then complete a VIRP

Circuit Analysis Example

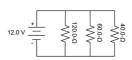
A 10- Ω , 15- Ω , and 5- Ω resistor are connected in a series circuit with a 90-V battery. Draw a schematic of the circuit and then complete a VIRP table for this circuit.

V=I	•
I=V R	


١.	VIRP Table					
		V (V)	1 (A)	R(C)	P(W)	
	R1	3	3	10	90	
	R2	45	3	15	135	
	R3	15	3	5	45	
	Total	90	3	30	270	

Summary: Series and Parallel Circuits

SERIES	PARALLEL
One path for current to flow.	
$\begin{split} I &= I_1 = I_2 = I_3 = \dots \\ V &= V_1 + V_2 + V_3 + \dots \\ R_{eq} &= R_1 + R_2 + R_3 + \dots \end{split}$	


Circuit Analysis Example

A 120.0- Ω resistor, a 60.0- Ω resistor, and a 40.0- Ω resistor are connected in parallel and placed across a 12.0-V battery. Draw a schematic and then complete a VIRP table for this circuit.

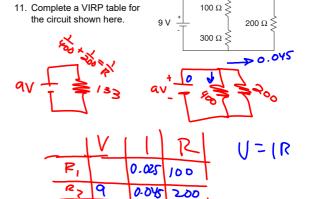
Circuit Analysis Example

A 120.0- Ω resistor, a 60.0- Ω resistor, and a 40.0- Ω resistor are connected in parallel and placed across a 12.0-V battery. Draw a schematic and then complete a VIRP table for this circuit.

Summary: Series and Parallel Circuits

SERIES	PARALLEL
One path for current to flow.	Multiple paths for current to flow.
$I = I_1 = I_2 = I_3 = \dots$ $V = V_1 + V_2 + V_3 + \dots$ $R_{eq} = R_1 + R_2 + R_3 + \dots$	$\begin{split} I &= I_1 + I_2 + I_3 + \dots \\ V &= V_1 = V_2 = V_3 = \dots \\ \frac{1}{R_{eq}} &= \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} + \dots \end{split}$

Gustav Kirchhoff


GERMAN PHYSICIST (1854)

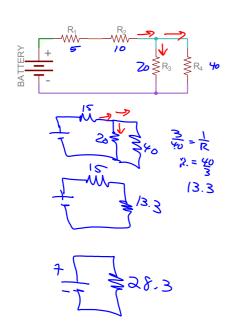
Kirchhoff's Current Law (Junction Rule)

"The sum of all current entering any point in a circuit has to equal the sum of all current leaving any point in a circuit."

"The sum of all the potential drops in any closed loop of a circuit has to equal zero."

300

VIRP Tables: IN-CLASS PROBLEMS


VIRP Tables: IN-CLASS PROBLEMS

11. Complete a VIRP table for the circuit shown here.

VIRP Table				
	V	I	R	Р
R1	2.5 V	0.025 A	100 Ω	0.0625 W
R2	9.0 V	0.045 A	200 Ω	0.4 W
R3	7.5 V	0.025 A	300 Ω	0.19 W
Total	9.0 V	0.07 A	133 Ω	0.63 W

practice. PROBLEMS 33-40

