2.3 | Speed and Velocity

- I can interpret and analyze the motion of an object moving with constant velocity.
- 2.3 I can interpret, analyze, and create velocity vs. time graphs for objects moving with constant velocity.

Chapter In Review

Distance = Total Length of Travel

Displacement = Change in position = $\bigwedge \times = \times_f - \times_o$

Chapter In Review

Average Speed = distance time

Average Velocity = $\frac{\text{displacement}}{\text{time}}$

?

CONCEPTUAL CHECKPOINT

You drive 4.00 mi at 30.0 mi/h and then another 4.00 mi at 50.0 mi/h. What is your average speed for the 8.00 mi trip?

$$\Lambda = \frac{f}{gr} = \frac{s}{s}$$

CONCEPTUAL CHECKPOINT

time = 0.133 hr

You drive 4.00 mi at 30.0 mi/h and then another 4.00 mi at 50.0 mi/h. What is your average speed for the 8.00 mi trip?

7

CONCEPTUAL CHECKPOINT

You drive 4.00 mi at 30.0 mi/h and then another 4.00 mi at 50.0 mi/h. What is your average speed for the 8.00 mi trip?

CONCEPTUAL CHECKPOINT

You drive $4.00~\rm mi$ at $30.0~\rm mi/h$ and then another $4.00~\rm mi$ at $50.0~\rm mi/h$. What is your average speed for the $8.00~\rm mi$ trip?

c.) What is the average velocity for the complete round trip?

$$\vec{V} = \frac{x_f - x_o}{t} = \frac{0 - 0}{485} = 0$$

Example

Create a position-time graph and a velocity-time graph that represents the motion of the person for the entire 48 seconds.

Graphing Motion With Constant Velocity

PRACTICE UNIT 2 PROBLEMS (15-17)