

7.2 FRICTIONAL FORCES

LEARNING TARGETS

I can define, analyze, and solve dynamic problems involving friction forces.

Friction is the force resisting

Friction Example
You need to move a $105-\mathrm{kg}$ sofa to a different location in the room. When you first push on the sofa, it does not move because of friction.

Friction Example
You need to move a $105-\mathrm{kg}$ sofa
to a different location in the
room. When you first push on
the sofa, it does not move
because of friction.

1. What characteristics about the sofa affect the amount of friction? Floor Material
Shape of legs Leg Material
Surface Area shape of conch
mass Weight
2. When you push with 102 N of force the sofa begins to move. Draw a free-body diagram for the sofa
right before it moves.

$$
F_{f, s}=F_{g, s} \quad f=F_{p, s}
$$

2 Important Friction Ideas

The friction force always acts in a direction opposite to the motion.

The magnitude of the friction force depends on the magnitude of the normal force between the two surfaces.

$f_{s} \underline{2}$ Types Friction

Friction: General Formula Kinetic Friction Force $f_{\mathrm{k}}=\mu_{\mathrm{k}} \mathrm{N}$

Static Friction Force $f_{\mathrm{s}} \leq \mu_{\mathrm{s}} \mathrm{N}$

Coefficient Of Friction

mu

1

The coefficient of friction, μ, is the ratio of the frictional force to the normal force.

Coefficient of Friction

Friction Example

Friction Example

Now you push the box across the floor at a constant speed of $1.0 \mathrm{~m} / \mathrm{s}$. How much force do you exert on the box now?

$$
\begin{aligned}
& \text { same F.B.D } \\
& F_{P, B}=\mu_{k} m g=49 \mathrm{~N}
\end{aligned}
$$

Stopping Force

3. A Mini and a Hummer have the exact same initial velocity, the exact same braking system, and the exact same kind of tires. Both vehicles slam on the brakes on the same road. Which will stop first?

PRACTICE

UNIT 7 PROBLEMS
 (4-6)

