Conservation of Momentum

Learning Target	Description
9.2	I can define, interpret, and solve problems involving the Law of Conservation of Momentum.

Momentum and Impulse Momentum $p = m \ V$ Impulse-Momentum Theorem $F \Delta t = \Delta p = p_f - p_i$

Newton's 3rd Law

Momentum

Law of Conservation of Momentum

- If the net force acting on an object is zero, its momentum is <u>conserved</u>.
- In any closed system, the total momentum of the system remains constant.

Recoil

A cannon fires a 19.0 kg ball from its 4.00 m long barrel with a muzzle velocity of 125 m/s. If the cannon has a total mass of 855 kg, what is the resulting recoil speed of the cannon?

PHYSICS 1 1

Momentum Tables

In analyzing momentum problems, a momentum table can be a powerful tool for problem solving. To create a momentum table, follow these basic steps:

- Identify all objects in the system. List them vertically down the left-hand column.
- 2. Determine the momenta of the objects before the event. Use variables for any unknowns.
- 3. Determine the momenta of the objects after the event. Use variables for any unknowns.
- 4. Add up all the momenta from before the event, and set them equal to the momenta after the event.
- 5. Solve your resulting equation for any unknowns.

Recoil

A cannon fires a 19.0 kg ball from its 4.00 m long barrel with a muzzle velocity of 125 m/s. If the cannon has a total mass of 855 kg, what is the resulting recoil speed of the cannon?

OBJECTS	MOMENTUM BEFORE (kg·m/s)	MOMENTUM AFTER (kg·m/s)
CANNON	(8)(19)(d)	(855) Nt'c
BALL	(435)11)(4)	(1)(125)=2375
TOTAL	0 kg. 4/s	O k5 75

$$\begin{cases}
855N_{f,c} + 2375 = 0 \\
V_{f,c} = \frac{-2375}{855}
\end{cases}$$

<u>Ballistocardiograph</u>

PRACTICE PROBLEMS

(9-12)

PHYSICS 1 2