

Net Work vs Network

Suppose that you push on the $30.0-\mathrm{kg}$ package with a constant force of 120 N through a distance of 0.800 m , and that the opposing friction force averages 5.00 N . Calculate the net work done on the package.

The net force is the push force minus friction, or $F_{\text {net }}=120 \mathrm{~N}-5.00 \mathrm{~N}=115 \mathrm{~N}$. Thus the net work is
$W_{\text {net }}=F_{\text {nel }} d=(115 \mathrm{~N})(0.800 \mathrm{~m})$
$=92.0 \mathrm{~N} \cdot \mathrm{~m}=92.0 \mathrm{~J}$.

Net Work vs Network

Suppose that you push on the 30.0-kg package with a constant force of 120 N through a distance of 0.800 m , and that the opposing friction force averages 5.00 N . Calculate the net work done on the package.

Net Work vs Network

The applied force does work.

$$
\begin{aligned}
W_{\text {app }} & =F_{\text {app }} d \cos \left(0^{\circ}\right)=F_{\text {app }} d \\
& =(120 \mathrm{~N})(0.800 \mathrm{~m}) \\
& =96.0 \mathrm{~J}
\end{aligned}
$$

The friction force and displacement are in opposite directions, so that $\theta=180^{\circ}$, and the work done by friction is

$$
W_{\mathrm{fr}}=F_{\mathrm{fr}} d \cos \left(180^{\circ}\right)=-F_{\mathrm{fr}} d
$$

$=-(5.00 \mathrm{~N})(0.800 \mathrm{~m})$
$=-4.00 \mathrm{~J}$.
So the amounts of work done by gravity, by the normal force, by the applied force, and by friction are, respectively,
$W_{\mathrm{gr}}=0$,
$W_{\mathrm{N}}=0$,
$\boldsymbol{W}_{\text {app }}=96.0 \mathrm{~J}$,
$W_{\mathrm{fr}}=-4.00 \mathrm{~J}$.
The total work done as the sum of the work done by each force is then seen to be
$W_{\text {total }}=W_{\mathrm{gr}}+W_{\mathrm{N}}+W_{\text {app }}+W_{\text {fr }}=92.0 \mathrm{~J}$.

VW BUG

A Volkswagon Bug ($m=800 \mathrm{~kg}$) is traveling down Grand Avenue at the speed limit (35 mph). How much kinetic energy does it possess?

$$
k=\frac{1}{2} m v^{2}=
$$

VW BUG

A Volkswagon Bug ($m=800 \mathrm{~kg}$) is traveling down Grand Avenue at the speed limit (35 mph). How much kinetic energy does it possess?
$K=\frac{1}{2} m v^{2}=\frac{1}{2}(800 \mathrm{~kg})(15.6 \mathrm{~m} / \mathrm{s})^{2}$
$K=97,000 \mathrm{~J}$

Work-Energy Theorem

When a force acts on an object over a distance, it is doing work on the object.

The result is a change in the speed of the object, and therefore a change in kinetic energy.

SEMI TRUCK

A Semi Truck ($m=25,000 \mathrm{~kg}$) has $97,000 \mathrm{~J}$ of kinetc energy. How fast is the truck traveling?

$$
\begin{aligned}
& k=\frac{1}{2} m v^{2} \\
& v=\sqrt{\frac{2 k}{m}}=2.8 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

Work-Energy Theorem

$$
W_{\text {total }}=\Delta K=1 / 2 m v_{t}^{2}-1 / 2 m v_{i}^{2}
$$

The total work done on an object is equal to the change in its kinetic energy.

IN CLASS: Work-Energy Theorem

4. On October 9, 1992, a 27 pound meteorite struck a car in Peekskill, NY, creating a dent about 22 cm deep. The speed of the meteorite on impact is hypothesized to be about $550 \mathrm{~m} / \mathrm{s}$.

a) How much kinetic energy did the meteorite have before it struck the car?
b) How much work does the car do on the meteorite during impact?
C) What was the average force exerted on the meteorite by the car?

IN CLASS: Work-Energy Theorem

4. On October 9, 1992, a 27 pound meteorite struck a car in Peekskill, NY, creating a dent about 22 cm deep. The speed of the meteorite on impact is hypothesized to be about $550 \mathrm{~m} / \mathrm{s}$.
a) How much kinetic energy did the meteorite have before it struck the car?
$K=\frac{1}{2} m v^{2}=\frac{1}{2}(12 \mathrm{~kg})(550 \mathrm{~m} / \mathrm{s})^{2}=1.8 \times 10^{6} \mathrm{~J}$
b) How much work does the car do on the meteorite during impact?
$W=\Delta K=\frac{1}{2} m v_{f}^{2}-\frac{1}{2} m v$
$W=\frac{1}{2}(12 \mathrm{~kg})(0 \mathrm{~m} / \mathrm{s})^{2}-\frac{1}{2}(12 \mathrm{~kg})(550 \mathrm{~m} / \mathrm{s})^{2}$
$W=-1.8 \times 10^{6} \mathrm{~J}$
c) What was the average force exerted on the meteorite by the car? $W=F d$
$F=W / d=\left(-1.8 \times 10^{6} \mathrm{~J}\right) /(0.22 \mathrm{~m})=8.2 \times 10^{6} \mathrm{~N}$

Meteor
 Impact

$V^{2}=V_{0}^{2}+2 a d$

practice.

UNIT 9 PROBLEMS (8-11)

