Kinetic Energy and The Work-Energy Theorem

LEARNING TARGET	DESCRIPTION
9.1	I can define, analyze, and calculate the amount of work done by a force in a closed system.
9.2	I can define, analyze, and solve problems involving kinetic energy.

$$W = F_{||}d = Fd\cos\theta$$

Units? 1 N m = 1 J (Joule)

Relationship? Directly Proportional

Negative Work and Total Work

Work depends on the angle between the force, $\vec{\mathbf{F}}$, and the displacement (or direction of motion), $\vec{\mathbf{d}}$.

Interpret the Graph

AP PHYSICS 1

Work Done By A Variable Force

The work done by a force moving an object from x_1 to x_2 is equal to the corresponding area between the force curve and the x axis. Force area under the curve 0 Position (b)

Interpret the Graph

Variable Force Example

The force shown in the figure moves from x = 0 to x = 0.75 m. How much work is done by the force if the object moves from

Interpret the Graph

Work Done By a Spring

\$ x.kx

WORK DONE BY A SPRING EXAMPLE

How much work is done to stretch a spring of force constant 1.0 x 10⁴ N/m, a distance of 0.15 m.

I'd love to continue talking about work, but I just don't have the energy.

- 1) What if mass is doubled?
- 2) What if the velocity is doubled?
- 3) What is the range of possible values for kinetic energy?

IN CLASS EXAMPLES

- 3. A 0.14 kg pinecone falls 16 m to the ground, where it lands with a speed of 13 m/s.
 - (a) How much kinetic energy does the pinecone have when it hits the ground? \(= \frac{1}{4} m V^2 = 12 \tau
 \)
 - (b) How much kinetic energy would it have if there is no air resistance?
 - k= 1 mv= 22,T V=1/8+2a(y,-43)=17.7ms (c) Did air resistance do positive work, negative work or zero
 - work on the pinecone. Explain.

AP PHYSICS 4