Inelastic Collisions

Review Momentum and Impulse

Momentum
\[p = m \cdot v \]

Impulse-Momentum Theorem
\[F \Delta t = \Delta p = p_f - p_i \]

Conservation of Momentum
If the net force acting on an object is zero, its momentum is conserved.

\[p_i = p_f \]

Two-Partical Collisions
A collision is a situation in which two objects strike one another and in which the net external force is either zero or negligibly small.

2 Types of Collisions
Inelastic collisions are when objects stick together on impact.

Model a Solution: Car Collision
A 1875-kg car going 23 m/s rear-ends a 1025-kg compact car going 17 m/s on ice in the same direction. The two cars stick together. How fast do the two cars move together immediately after the collision?
Momentum Tables

In analyzing collisions and explosions, a momentum table can be a powerful tool for problem solving. To create a momentum table, follow these basic steps:

1. Identify all objects in the system. List them vertically down the left-hand column.
2. Determine the momenta of the objects before the event. Use variables for any unknowns.
3. Determine the momenta of the objects after the event. Use variables for any unknowns.
4. Add up all the momenta from before the event, and set them equal to the momenta after the event.
5. Solve your resulting equation for any unknowns.

Model a Solution: Car Collision

A 1875-kg car going 23 m/s rear-ends a 1025-kg compact car going 17 m/s on ice in the same direction. The two cars stick together. How fast do the two cars move together immediately after the collision?

<table>
<thead>
<tr>
<th>OBJECTS</th>
<th>MOMENTUM BEFORE (kg m/s)</th>
<th>MOMENTUM AFTER (kg m/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAR C</td>
<td>(1875 kg)(23 m/s) = 43,125 kg m/s</td>
<td>(2900 kg) v_f</td>
</tr>
<tr>
<td>CAR D</td>
<td>(1025 kg)(17 m/s) = 17,425 kg m/s</td>
<td>(2900 kg) v_f</td>
</tr>
<tr>
<td>TOTAL</td>
<td>60,550 kg m/s</td>
<td>60,550 kg m/s</td>
</tr>
</tbody>
</table>

\[
(2900 \text{ kg}) v_f = 60,550 \text{ kg m/s} \\
v_f = 21 \text{ m/s}
\]

Car Collision

6. A 1875-kg car going 23 m/s and a 1025-kg compact car going 17 m/s collide head on. The two cars stick together. How fast do the two cars move together immediately after the collision?
Car Collision

What if the same two cars collided in a head on collision? What is the magnitude and direction of the two cars after the collision?

<table>
<thead>
<tr>
<th>OBJECTS</th>
<th>MOMENTUM BEFORE (kg m/s)</th>
<th>MOMENTUM AFTER (kg m/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAR C</td>
<td>(1875 kg)(23 m/s)</td>
<td>(2900 kg) v_f</td>
</tr>
<tr>
<td>CAR D</td>
<td>(1025 kg)(-17 m/s)</td>
<td>(-17,425 kg m/s)</td>
</tr>
<tr>
<td>TOTAL</td>
<td>25,700 kg m/s</td>
<td>25,700 kg m/s</td>
</tr>
</tbody>
</table>

(2900 kg) v_f = 25,700 kg m/s

v_f = 8.9 m/s