

The Human Engine

A 70.0 kg man walks up a long flight of stairs. Calculate the work done if the vertical height of the stairs is 4.5 m .
$W=F \cdot d \cos \theta^{\prime}$

Power

Power is the rate at which energy is transferred or the rate at which work is done.

$$
P=\frac{W}{t}
$$

Work Done

Work done is the amount of energy transferred.
Work done $=$ force \times distance moved in the direction of the force.

$$
\begin{aligned}
& W=\Delta E \\
& W=F \times d \cos \theta
\end{aligned}
$$

$\mathrm{W}=$ work done (J)
$\Delta E=$ energy transferred (J)
$F=$ force (N)
$d=$ distance moved in the direction of the force (m)

The Human Engine

Would it be more work for the man to run up the stairs?

Power

Power is the rate at which energy is transferred or the rate at which work is done.

$$
\begin{aligned}
& P=\frac{W}{t} \\
& P=\frac{\Delta E}{t}
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{P}=\text { power }(\mathrm{Watt}) \\
& \mathrm{W}=\text { work done }(\mathrm{J}) \\
& \Delta E=\text { energy transferred }(\mathrm{J}) \\
& t=\text { time }(\mathrm{s})
\end{aligned}
$$

POWER
$P=\frac{W}{t}=\frac{\Delta E}{\Delta t}$
Vector or Scalar?

Units?

Relationship?

$$
\begin{aligned}
& W \rightarrow \text { Directly Proportional } \\
& t \rightarrow \text { Inversely Proportional }
\end{aligned}
$$

Bronc Power

Horsepower
 $1 \mathrm{hp}=746 \mathrm{~W}$

IN CLASS: Power

5. A 70.0 kg man runs up a long flight of stairs in 4.0 s . The vertical height of the stairs is 4.5 m . What power does the man develop, in watts and horsepower, as he climbs the stairs?
6. To pass a slow-moving truck, you want your fancy $1.30 \times 10^{3} \mathrm{~kg}$ car to accelerate from $13.4 \mathrm{~m} / \mathrm{s}$ to $17.9 \mathrm{~m} / \mathrm{s}$ in 3.00 s . What is the minimum power required for this pass?

James Watt

1736-1819

The Human Engine

A 70.0 kg man runs up a long flight of stairs in 4.0 s . The vertical height of the stairs is 4.5 m . What power does the man develop, in watts and horsepower, as he climbs the stairs?

$$
\begin{aligned}
& P=\frac{W}{t}=\frac{m g h}{t} \\
& P=770 W=1.0 \mathrm{hp}
\end{aligned}
$$

Passing Fancy

To pass a slow-moving truck, you want your fancy $1.30 \times 10^{3} \mathrm{~kg}$ car to accelerate from $13.4 \mathrm{~m} / \mathrm{s}$ to $17.9 \mathrm{~m} / \mathrm{s}$ in 3.00 s . What is the minimum power required for this pass?

Find the Maximum Speed

It takes a force of 1280 N to keep a 1500 kg car moving with constant speed up a slope of 5.00°. If the engine delivers 50.0 hp to the drive wheels, what is the maximum speed of the car?

$$
P=F \cdot V=\frac{P}{F} 29 \mathrm{~m}_{\mathrm{s}}
$$

Power: Force and Veloctiy

$$
P=\frac{W}{t}=\left(\frac{d}{t}\right)
$$

$$
P=\vec{F} \cdot \vec{V}
$$

$$
\text { * constant } \vec{V}
$$

the poler

PRACTICE PROBLEMS

(12-16)

