12.1 DESCRIBING ANGULAR MOTION

1. The following angles are given in degrees. Convert them to radians: $45^{\circ}, 180^{\circ}$.
2. The following angles are given in radians. Convert them to degrees: 0.70 rad, 5π rad.
3. $A C D$ at $22.0 \mathrm{rad} / \mathrm{s}$. What is the angular speed in revolutions per minute (rpm)?
4. A ceiling fan rotates at the rate of 45° every 0.75 s . What is the angular speed of the fan in radians per second?
5. How much time does it take for a spinning baseball with an angular speed of $38 \mathrm{rad} / \mathrm{s}$ to rotate through 15° ?
6. The hour hand on a certain clock is 8.2 cm long. Find the tangential speed of the tip of this hand during normal operation.
7. The wheels of a car speed up from $5.2 \mathrm{rad} / \mathrm{s}$ to $7.9 \mathrm{rad} / \mathrm{s}$ in 1.3 s . What is the angular acceleration of the wheels?
8. A bicycle wheel with a radius of 0.31 m rotates with an angular speed of $21 \mathrm{rad} / \mathrm{s}$ about its axle, which is at rest. What is the linear speed of a point on the rim of the wheel?
9. A propeller on a ship has an initial angular velocity of $5.1 \mathrm{rad} / \mathrm{s}$ and an angular acceleration of $1.6 \mathrm{rad} / \mathrm{s}^{2}$. What is the angular velocity of the propeller after 3.0 s?

12.2 ROLLING MOTION AND THE MOMENT OF INERTIA

10. As a car travels along a road, the speed of the tops of its wheels is $46 \mathrm{~m} / \mathrm{s}$. What is the speed of the car and its occupants?
11. A soccer ball, which has a circumference of 70.0 cm , rolls 14.0 m in 3.35 s . What is the average angular speed of the ball during this time?
12. A basketball has a radius of 0.12 m and a mass of 0.57 kg . Assuming the ball to be a hollow sphere, what is its moment of inertia?
13. An electric fan spinning with an angular speed of $13 \mathrm{rad} / \mathrm{s}$ has a kinetic energy of 4.6 J . What is the moment of inertia of the fan?
14. A chef spins a disk of pizza dough over her head, giving it an angular speed of $7.2 \mathrm{rad} / \mathrm{s}$. If the moment of inertia of the pizza dough is $6.3 \times 10^{-6} \mathrm{~kg} \cdot \mathrm{~m}^{2}$, what is its rotational kinetic energy? (Assume that the disk of dough is uniform.)
15. The moment of inertia of a ball is $1.6 \times 10^{-8} \mathrm{~kg} \cdot \mathrm{~m}^{2}$. If the ball spins with an angular speed of $8.2 \mathrm{rad} / \mathrm{s}$, what is its angular momentum?

12.3 TORQUE

16. A force of 5.5 N is applied to an object. The moment arm for the force is 0.84 m . What is the torque produced by the force?
17. A force of 8.8 N pushes on the rim of a wheel of radius 0.41 m . (a) What is the maximum torque the force can produce? (b) If the direction of the force is at an angle of 22° relative to the radial direction, then what is the resulting torque on the wheel?
18. To tighten a spark plug, it is recommended that a torque of $15 \mathrm{~N} \cdot \mathrm{~m}$ be applied. If a mechanic tightens the spark plug with a wrench that is 25 cm long, what is the force necessary to create the desired torque?
19. A torque of $7.4 \mathrm{~N} \cdot \mathrm{~m}$ is applied to a wheel with a moment of inertia of $0.092 \mathrm{~kg} \cdot \mathrm{~m}^{2}$. What is the resulting angular acceleration?
20. A ceiling fan has an angular acceleration of $62 \mathrm{rad} / \mathrm{s}^{2}$ when acted on by a torque of $8.3 \mathrm{~N} \cdot \mathrm{~m}$. What is the moment of inertia of the fan?
21. A torque of $0.97 \mathrm{~N} \cdot \mathrm{~m}$ is applied to a bicycle wheel of radius 35 cm and mass 0.75 kg . Treating the wheel as a hoop, find its angular acceleration.
22. What torque is required to give a disk of mass 6.1 kg and radius 0.58 m an angular acceleration of $17 \mathrm{rad} / \mathrm{s}^{2}$?

12.4 STATIC EQUILIBRIUM

23. A lightweight plastic rod has a mass of 1.0 kg attached to one end and a mass of 1.5 kg attached to the other end. The rod has a length of 0.80 m . How far from the 1.0 kg mass should a string be attached to balance the rod?
24. A 0.34 kg meter stick balances at its center. If a student ID lanyard is suspended from on end of the stick the balance point moves 9.5 cm toward that end. What is the mass of the lanyard?
25. A lightweight wooden stick has a length of 0.90 m . A 0.75 kg weight is attached to the left end of the stick and an unknown mass m is attached to the right end of the stick. When it is suspended from a string it balances at a point 25 cm from its left end. (a) Is the mass m greater than, less than, or equal to 0.75 kg ? Explain. (b) Determine the mass m.
26.A 7.3-kg ladder, 1.92 m long, rests on two sawhorses, as shown in Figure 8-15. Sawhorse A, on the left, is located 0.30 m from the end, and sawhorse B, on the right, is located 0.45 m from the other end. What force does each sawhorse exert on the ladder?

Figure 8-15
27. A banner is suspended from a horizontal, pivoted pole, as shown in Figure 8-30. The pole is 2.10 m long and weighs 175 N . The banner, which weighs 105 N , is suspended 1.80 m from the pivot point or axis of rotation. What is the tension in the cable supporting the pole?

