\qquad
UNIT 12 PRACTICE PROBLEMS
PHYSICS 1

13.1 MACHINES

1. A pulley system lifts a $1345-\mathrm{N}$ weight a distance of 0.975 m . Paul pulls the rope a distance of 3.90 m , exerting a force of 375 N .
a. What is the ideal mechanical advantage of the system?
b. What is the mechanical advantage?
c. How efficient is the system?
2. A force of 1.4 N is exerted through a distance of 40.0 cm on a rope in a pulley system to lift a $0.50-\mathrm{kg}$ mass 10.0 cm . Calculate the following.
a. the MA
b. the IMA
c. the efficiency
3. A student exerts a force of 250 N on a lever, through a distance of 1.6 m , as he lifts a $150-\mathrm{kg}$ crate. If the efficiency of the lever is 90.0 percent, how far is the crate lifted?
4. What work is required to lift a $215-\mathrm{kg}$ mass a distance of 5.65 m , using a machine that is 72.5 percent efficient?

13.2 OSCILLATIONS AND PERIODIC MOTION

5. While fishing for catfish, a fisherman suddenly notices that the bobber (a floating device) attached to his line is bobbing up and down with a frequency of 2.2 Hz . What is the period of the bobber's motion?
6. If you dribble a basketball with a frequency of 1.77 Hz , how long does it take for you to complete 12 dribbles?
7. You take your pulse and observe 74 heartbeats in a minute. What are the period and frequency of your heartbeat?
8. (a) Your heart beats with a frequency of 1.45 Hz . How many beats occur in a minute? (b) If the frequency of your heartbeat increases, will the number of beats in a minute increase, decrease, or stay the same? (c) How many beats occur in a minute if the frequency increases to 1.55 Hz ?

13.3 SIMPLE HARMONIC MOTION - SPRING OSCILLATORS

9. A $0.42-\mathrm{kg}$ mass attached to a spring undergoes simple harmonic motion with a period of 0.75 s . What is the force constant of the spring?
10.A 0.32 kg mass attached to a spring undergoes simple harmonic motion with a frequency of 1.6 Hz . What is the force constant of the spring?
10. You have a spring with a spring constant of $22 \mathrm{~N} / \mathrm{m}$. What mass should you attach to this spring so that its motion has a period of 0.95 s ?
11. When a $0.50-\mathrm{kg}$ mass is attached to a vertical spring, the spring stretches by 15 cm . How much mass must be attached to the spring to result in a 0.75-s period of oscillation?

13.4 SIMPLE HARMONIC MOTION - PENDULUMS

13. The chains of a swing on a playground swing set are 3.0 m long. What is the period of this swing?
14. How long must a pendulum be to have a period of 1.0 s? Assume the acceleration due to gravity is $9.81 \mathrm{~m} / \mathrm{s}^{2}$.
15. How long must a pendulum be on the Moon, where $\mathrm{g}=1.6 \mathrm{~m} / \mathrm{s}^{2}$, to have a period of 2.0 s ?
16. On a planet with an unknown value of g , the period of a 0.75 -m-long pendulum is 1.8 s . What is g for this planet?
17. What is the frequency of a pendulum of length 1.25 m at a location where the acceleration due to gravity is $9.82 \mathrm{~m} / \mathrm{s}^{2}$?
